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The two-dimensional wave pattern produced in a homogeneous rotating fluid 
by a forcing effect oscillating with a frequency cr; and tmvelling with a uniform 
speed U along a line inclined to the axis of rotation at  an arbitrary angle u is 
studied following Lighthill’s technique. It is shown how the far field changes 
with a and IT;. 

For all crh < 2Q, except for gA = 2Qsina (Q being the angular velocity of the 
fluid), the forcing effect excites two systems of waves. When cr; -+ 2Q sing one 
of these systems spreads out, influencing the upstream side while the other 
shrinks in the downstream direction. This upstream influence is to the left or 
to the right of the line of motion of the forcing effect (the forcing line) according 
as crh - 2st sin u 2 0 and increases as crh - 2f2 sin a decreases. For CT; > 2Q there 
is only a single system propagating downstream. As a varies these systems under- 
go a kind of rotation retaining the main features. a $: 0 or in- makes the pattern 
asymmetric about the forcing line while a non-zero CT; splits the steady-case 
identical wave systems into two, which are otherwise coincident. 

When cr; = 2Q sin a the forcing effect excites straight unattenuated waves of 
fixed frequency travelling both ahead and behind in a ‘column’ parallel to the 
forcing line and enclosing it. Also there are two other systems, which propagate 
without penetrating into an upstream wedge. It is shown that this ‘column’ is 
the counterpart of the ‘Taylor column’. 

1. Introduction 
In geophysical fluid dynamics, which includes the study of rotating fluids and 

stratified fluids, many types of wave systems are possible and it is desirable to 
know how they can be excited by different types of forcing effects. With this 
motivation, following a technique developed by Lighthill ( 1960), several problems 
under different conditions have been studied by Nigam & Nigam (1 962), Lighthill 
(1967), Mowbray & Rarity (1967), Stevenson (1969), Subba Rao & Prabhakara 
Rao (1971), and others. This paper deals with the excitation of such waves by 
a forcing effect travelling in an arbitrary direction with a uniform velocity U 
and oscillating with a frequency 0; in a homogeneous rotating fluid. 

Plane inertial waves in a rotating fluid are dispersive, anisotropic and are 
circularly polarized (cf. Greenspan 1968, p. 187). So the wave patterns produced 
by forcing effects travelling in different directions are not in general the same. 
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The pattern depends only on the azimuthal angle of the line of motion of the 
forcing effect (the ‘forcing line’ for short) but not on the meridional angle. This 
urges one to explore the situation in which the forcing effect travels in an arbitrary 
direction. The complications encountered in solving problems of this type are 
numerous and often intractable. In  view of this only a two-dimensional forcing 
effect (for which everything is independent of the distance y in a direction fixed in a 
rotating frame of reference and perpendicular to the axis of rotation) is considered 
and it is hoped that this will throw some light on more complicated three- 
dimensional problems. These forcing effects could be any type of disturbing 
agencies like a horizontal cylinder moving parallel to itself and oscillating or 
a combination of line sources and sinks, etc. No attempt has been made so far 
t o  determine the wave pattern excited in rotating fluids by a two-dimensional 
forcing effect travelling in an arbitrary direction. Nevertheless, from the existing 
literature it is possible to derive the main features of the pattern in some special 
cases using certain well-established analogies. All such results are recalled here 
first and the cases not covered by them are studied in detail in the text. It is 
also indicated in the text how the several patterns for arbitrary direction corre- 
spond to these special cases. 

The excitation of waves in a homogeneous rotating fluid by steady forcing 
effects (ch = 0)  travelling along the axis of rotation and the wave pattern have 
been investigated by Lighthill (1967) and the corresponding oscillatory problem 
has been studied by Nigam & Nigam (1962). Not only do these problems give an 
idea of the various wave systems generated but also they help one to envisage 
some of the interesting phenomena in rotating fluids. In  particular, Lighthill 
(1967) explains most clearly and in a simple manner, in terms of plane inertial 
waves, the formation of the ‘Taylor column’, its structure and the presence of 
spherical waves downstream. On the other hand, Nigam & Nigam (1962) ex- 
plain how new systems of waves evolve with the oscillations of the forcing effect 
and how the frequency makes it possible to influence the upstream side by 
exciting waves which propagate ahead of the forcing effect. The similarity between 
axisymmetric flows and planar ones in a rotating fluid (cf. Bretherton 1967) 
implies that a two-dimensional forcing effect travelling along the axis of rotation 
also generates similar wave pattern. Hence the entire two-dimensional pattern 
is also symmetric about the forcing line. The steady forcing effect excites 
cylindrical waves of uniform wavelength n U / Q  !2 being the angular velocity of 
the fluid, propagating in all directions on the downstream side. Also, a two- 
dimensional analogue of the ‘ Taylor column’ (hereafter denoted b y 7 )  extending 
indefinitely both ahead and behind also appears. The upstream part of F i s  filled 
with straight unattenuated plane waves travelling parallel to the axis of rotation 
withwavelengths greater thannU/Q (the low-pass filter) and the downstreampart 
of F is composed of similar waves with no restriction on their wavelengths. 
When the forcing effects oscillate with a frequency IT; < 2!2 the upstream part of 
F and a part of the downstream cylindrical waves combine into a new system 
propagating in all directions but not penetrating into an upstream wedge of 
semi-angle sin-l (aJ2S2) with parabola-like wave crests. The rest of the waves 
combine into another system and propagate downstream either in a continua- 
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tion of the upstream wedge or a wedge determined by the cusp loci of their wave 
crests (cf. figure 7).  The wave crests have the shape of a flared skirt with an 
inverted curved triangle for its head. As CT; increases to 2Q the upstream wedge 
tends to a plane perpendicular to the forcing line while the wedge formed by 
the cusp loci shrinks. So the system influencing the upstream side is gradually com- 
pressed towards the downstream side and disappears completely when u; = 2Q. 
The flared-skirt pattern spreads out to  give propagation in all directions below 
the forcing effect while the curved triangular head shrinks. For cr; > 2 0  the 
flared-skirt pattern becomes folded upon itself, forming another bigger curved 
triangle, and all the waves propagate downstream, confining themselves to the 
wedge determined by the loci of the cusped vertices of the bigger triangle. 
If u; increases further this system simply shrinks. 

The analogy between the motion in a vertical plane in a Boussinesq stratified 
fluid and the planar motion in a rotating fluid (Veronis 1970) provides an im- 
mediate translation of the description from stratified systems in terms of internal 
waves to rotating systems in terms of inertial waves. With special reference to 
the type of problems considered in this paper, this analogy means that the wave 
pattern excited in a stratified fluid by a forcing effect travelling at an angle a: 
to the vertical, and the wave pattern excited in a homogeneous rotating fluid 
by a forcing effect travelling at an angle - a to the axis of rotation are mirror 
images of each other in the forcing line provided that the corresponding 
parameters in both the fluid systems have the same values and the forcing effect 
in one fluid system is the reflexion of the other in the forcing line. 

When a forcing effect travels with a uniform velocity in an arbitrary direction 
in a homogeneous rotating fluid this analogy enables one to derive all the im- 
portant features of the wave pattern directly from Rarity (1967), who studied 
the two-dimensional internal wave pattern produced by a steady (a; = 0) dis- 
turbance moving with a uniform velocity along a line of arbitrary inclination. 
For a given inclination a of the forcing effect, the wavenumber curves and the 
lines of constant phase associated with a rotating fluid are respectively re- 
flexions, in the line K ,  = 0 and Y = 0, of the figures given by Rarity (1967) for 
an inclination &r - a. The pattern consists of a single system of waves (which is 
actually a superposition of two identical wave systems) propagating in all 
directions which are to the left of a line passing through the centre of the forcing 
effect and inclined at an angle a: to the forcing line, where 0 < a  < 3. and a: 
is measured counterclockwise. The crests and the lines of constant phase are 
cusped curves with their arms asymptotic to the above-mentioned boundary 
line. The cusp locus is to the right of the forcing line, in the fourth quadrant. 
There is a caustic along the downstream part of the forcing line and the crests 
touch the downstream part of the forcing line on the right. These crests travel 
in the same direction as the forcing effect with phase velocities less than U ,  the 
speedof the forcing effect, and the points with horizontal tangents have maximum 
phase velocity U. As a: increases the boundary line and the disturbed region 
below it rotate about the forcing effect in the counterclockwise sense. The wave 
crests also rotate about the caustic points in the same sense as the boundary line 
and tend to become symmetric about the downstream part of the forcing line 

9-2 
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and finally take on the 'flared-skirt' pattern when a = 471. As a decreases the 
boundary line rotates towards the forcing line, thereby influencing larger and 
larger areas in the upstream side, which is to the left of the forcing line, in the 
second quadrant. But the situation in the fourth quadrant is different. When a 
decreases below 19", the cusp locus which turns away from the downstream part 
of the forcing line crosses the boundary line (cf. figure 7) and tends to occupy 
the entire fourth quadrant as a -+ 0. So as a decreases the disturbed region in the 
fourth quadrant spreads out or shrinks according as a 2 19". The upper arm of 
the crest curves, becoming the shape of a walking stick while the lower arm 
straightens and becomes parallel to  the downstream part of the forcing line. 
When a is sufficiently small the disturbance is found almost everywhere except, 
in the first quadrant. Finally in the limit a = 0 this system splits into two parts 
as in Lighthill (1967). 

Axisymmetric internal wave patterns generated by an oscillating body travel- 
ling vertically upwards have been studied both theoretically and experimentally 
by Stevenson (1969). Again using the above analogies the wave pattern due to 
a two-dimensional forcing effect oscillating with a frequency crh and travelling 
perpendicular to the axis of rotation with constant velocity in a homogeneous 
rotating fluid could be derived from Stevenson (1969). Here the wave pattern 
(and the wavenumber curve) are symmetric about the forcing line and because 
of this the wavenumber curves and the lines of constant phase for the rotating 
case are similar to those in the figures given in Stevenson (1969). For 0 c cr; < 2sZ 
the wavenumber curve consists of two parabola-like curves passing through the 
origin and (0, - ah/U). The waves associated with the wavenumber curve above 
the origin propagate downstream, confining themselves to a wedge of semi-angle 
tan-1 ( (cTJU) (4Qz - ahz)*) with flared-skirt crests. The waves associated with the 
rest of the wavenumber curve propagate in all directions without penetrating 
into the image of the above wedge in the origin with w-shaped crests. As cr; -+ 2sZ 
the w-shaped system spreads and propagates in all directions while the flared- 
skirt system shrinks and becomes a family of straight unattenuated waves 
propagating downstream parallel to the downstream part of the forcing line. 
When crh > 2Q, the wavenumber curve becomes a x-shaped curve and the w-  
shaped system folds back on itself and propagates only downstream in a wedge 
with kite-shaped crests. This system gradually shrinks as crh increases further. 

The forcing effects travelling in various directions and the patterns generated 
by them exhibit certain symmetry properties among themselves which a.re 
evident from equation (7) below. A forcing effect travelling at an inclination a 
to the axis of rotation (or the vertical, if the fluid is stratified) and its image in 
the origin or in the axis of rotation (or the vertical) generate wave patterns which 
are also images of each other in the origin or the axis of rotation (or the vertical) 
respectively. For this reason only those forcing effects whose inclination lies 
between 0 and &r are considered in this paper. Section 2 gives the governing 
equations and a formal solution following Lighthill (1967). Section 3 is concerned 
with the description of the wave pattern for a fixed a and a;. The changes and 
modifications arising from variations in a and IT; are described in 9 4. Section 6 
is a summary of the salient features of the wave pattern. 
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2. The governing equations and a formal solution 
A large body of inviscid incompressible homogeneous fluid is rotating like 

a rigid body with a constant angular velocity about an axis Ox and Oxyx is 
a Cartesian frame rotating with the fluid, The motion in this fluid is generated by 
a two-dimensional forcing effect of finite extent which is independent of the 
y co-ordinate, oscillating with a frequency c; and travelling with a constant 
velocity Uat ananglea to Ox, a being measured clockwjse. If the motion generated 
is small then at distances large compared with the dimensions of the forcing 
effect it constitutes a small perturbation to the rigid rotation and hence takes 
the form of inertial waves. This perturbation velocity q in the inertial oscillations 
satisfies the differential equation 

[g (g+$) +4!2&] q = exp{-ivAt’}H(x- Ljt’sina,z- Ut’cosa), (1) 

where the right-hand side, which vanishes outside a finite region, represents the 
forcing effect generating the motion (Lighthill 1967). 

Consider a new frame of reference Ox, ylzl which is fixed relative to the forcing 
effect, with 0 2 ,  along the forcing line and with Oy, parallel to Oy. Then the 
co-ordinates in the two frames are connected by the relations 

x1 = c l ( x  cos a - z sin a), 

z1 = c l ( x  sin a + z cos a) - t ,  
y, = e-ly, 

where e = U/2sZL is the Rossby number, L is a characteristic dimension of the 
forcing effect, t = 2Qt’ and all other variables are dimensionless. In  this new 
frame (1) takes the form 

[(i-&)2 (;+&) + q, = exp{-i~ot}H(z,,x,), (2) 

where q, denotes the velocity vector in the new frame and go is the dimensionless 
frequency 4 / 2 Q .  A formal solution of (2) is given by 

with i3(Zl, n,, go, a)  = (go  + n1)2 (9 +n:) - (n, cos a - 1, sin (4) 

and ~ ( z , , z , )  = Ia Se ~ ~ ~ , , ~ , ~ e ~ p ~ ~ ~ ~ , ~ , + ~ , ~ , ~ ~ ~ ~ l ~ ~ l ,  ( 5 )  
-a - m  

defining the Fourier transform of H(x,, 2,). 
A method for deriving the asymptotic values of integrals of the type (3) valid 

at distances large compared with the dimensions of the forcing effect has been 
given by Lighthill (1960, 1965, 1967). Using this technique the far field could be 
described in terms of plane inertial waves of the type 

exp {i [ - cro t + 1, x1 + n, z,]}. (6) 
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The homogeneous part of the differential equation (2) admits plane-wave solu- 
tions (6) provided that 

fvl, n,, Go, 4 = 0, (‘7) 

which represents a curve, the wavenumber curve (hereafter denoted by S ) ,  in 
the I , ,  n, plane. Since ( 7 )  also represents the locus of the singularities of the 
integrand in (3), each point (Z,, n,) on S contributes to the value of the integral (3) 
and a Fourier sum of such solutions gives the total solution. The amplitude of 
each wave propagating in any particular direction is given by 

h 

where K is the curvature of the wavenumber curve, rl = Ir-cut/, the distance 
from the forcing region, and V the gradient operator in the k, = (Z,,n,) plane. 
The amplitude of the waves associated with the points a t  which the curvature of S 
vanishes, that is the points of inflexion, decays like r ~ *  instead of rC3. 

The Lighthill rule for the radiation condition and the asymptotic formula (8) 
imply the following. When the wavenumber surface is cylindrical its intersection 
with the plane m = 0 (the wavenumber curve ( 7 ) )  alone determines the complete 
pattern except for the amplitudes. At any point k, on S, if we draw an arrow 
normal to X and pointing in the direction of go increasing then this arrow will 
be along the group velocity of a wave packet centred round k,. Hence each point 
k, on S corresponds to a plane wave (6) of wavelength 2n/lk,l that could be 
excited by the forcing effect and would stretch out from the forcing region in the 
direction of the arrow ut that point. (Only those points on S at which Yi(Z,, n,) 
takes a non-negligible value produce significant waves.) Therefore the waves are 
found in the regions covered by the arrows on S. The arrows a t  the points of 
inflexion may form a boundary separating the disturbed and the undisturbed 
fluid regions. If there is more than one arrow in a particular direction the waves 
corresponding to these are superposed on one another along that direction and 
their amplitudes are separately determined by (8). 

Further insight regarding the manner in which the different waves propagate 
may be gained by examining the lines of constant phase 

k,.r, = @,+sot, 

which are the polar reciprocals of S in a circle of radius a, where + (Tot, 
@, is a constant and r, = (x,, 2,). The above equation can be solved and put in 
the parametric form 

= 

The sign in the formula given in Lighthill (1967) is corrected so that r, is always 
in the direction of the arrow (the group velocity) and not along the normal. 

A qualitative description of the wave pattern excited by the aforesaid forcing 
effect is given with the help of these rules. 
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3. Description of wave pattern 
The wavenumber curve is always confined to the region Igo+n,l < 1, which 

translates in the negative-n, direction as cro increases. The entire frequency 
spectrum could be divided into three intervals 0 < go < sina, sina < go < 1 
and go > 1 such that in any one of these intervals S has the same features for 
all go though these features are not the same for different intervals. When 
a, = sin a there is adegeneracyin the shapeof Swhich has further specialfeatures. 
This is treated separately. First a description of the pattern for a fixed a (say 
a = 30') and for a typical cro belonging to each of these intervals is given in this 
section, and the study of the effects due to variations in go and a are postponed 
to the next section. The shape of S for a = 30' and for a typical go belonging to 
the aforesaid intervals is shown in figures 1 , 3 , 4  and 5 and the necessary notation 
used in the text is indicated in the figures. For a non-zero go the symmetry with 
respect to the origin present in S when a, = 0 (cf. Rarity 1967) disappears while 
a + 0 or &-I gives asymmetry about the I ,  and n1 axes. 

Let 8, and S- represent the two portions of S which are above and below the 
1, axis. By rewriting ( 7 )  as 

,u = [ & sin (a - 0)  - ao]/sin 6 ,  (10) 

where I ,  = ,u GOS 8 and n, = ,a sin 6, it is not difficult to see that the arrows on the 
open branches of X point into the regions below it and that for the closed portion 
they point inwards or outwards according as it lies below or above the I ,  axis. 
(See figures 1, 3, 4 and 5.) The direction of the arrows jumps from one side to 
the other as one crosses the origin along either of the branches. Let OR,-OR, 
denote the directions of the four arrows on S a t  the origin such that R,OR, is 
normal to the curvedO$? and R,OR, to the other. R,OR, and R,OR, make angles 
- Q and Q respectively with the n axis, where 

Q = cot-l(cro2- 1)3. (11) 

The direction of the arrow at the point of inflexion will be denoted by OM, and its 
inclination to the downstream part of the forcing line by pi. Let 2; denote a point 
on the downstream part of the forcing line. All the quantities associated with the 
wavenumber curve are denoted by script capital letters and the corresponding 
ones in the xl, x1 phne by italic capitals. 

Case (i). 0 < go < sina 

Here S consists of two parabola-like curves, passing through the origin and 
% = ( - c ~ ~ c o t a ,  -go),  and asymptotic to n, = - g o +  sina. S,  has a point of 
inflexion dl to the left of a? and S- also has a point of inflexion A?, to the right 
of (see figure 1). 

From the shape of S, it is easy to  see that the associated waves are confined 
to the bigger of the two wedges R,OR, and R,OM, [viz. R,OR, when a = 30', 
see figure 21. There are three waves of different wavelengths along each direction 
in the smaller of the two wedges Z;OM, and .Z;OR, and only one in the other 
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FIGURE 1. The wavenumber curve S for cr,, = Q sin a and a = 30". . . -, asymptotes; 0, 
point,s of inflexion. The arrows on S give the direction of the group velocity. 

directions. The parametric equation (9) for the lines of constant phase in the 
present problem simplifies to 

x1 = Q2[1 - (a,, + n,)2]* sgn [ - (go + n,)]/(Zf + n:),) 

with I, = -n,sinacosa+ In,(a,+n,)l [I -(ao+n1)2]4 

[(go + n1)2 - sin2 a] 

and Icr,+n,l 6 I .  A typical wave-crest shape Pl, given by (12), is shown in 
figure 2. It is a cusp-shaped curve with its arms asymptotic to OR, and OR, 
and with OM, as the cusp locus. Directed lines drawn normal to P, represent, 
both in magnitude and direction, the phase velocity 

V, = ,u-1(c0 +,u sin 0) i;, (14) 

of the waves relative to the fluid at  that point, where k, is the unit wavenumber 
vector. The entire family of these crests touches the downstream part of the 
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FIGURE 2. The shape of the lines of constant phase corresponding to S in figure 1. 0, 
caustic points; +, magnitude and direction of phase velocity a t  that point ; I-+, maximum 
phase velocity; x , points C and C‘. The various lines which determine the enveloping 
wedge of a partioular system have the same notation. The x’ and z’ axes are parallel to 
the x and z axes but fixed in the forcing effect. 



138 G. V .  Prabhakara Rao 

forcing line, forming a caustic along it. The waves of minimum wavelength and 
zero phase velocity are found near the caustic point, denoted by a solid circle, 
and the wavelength and phase velocity increase without limit towards OR, or OR,. 
In  particular, the crests which are to the left of the forcing line travel with speeds 
much greater than U .  The part of the wave crests above the caustic point moves 
towards the forcing line while the portion below moves away from it. This leads 
to accumulation of wave crests to the right of the downstream part of the forcing 
line. Thus the waves associated with 8, consist of a single system of waves, say 
system I, propagatiw in a wedge containing the third quadrant. This system 
includes certain waves with very low wavenumbers propagating ahead of the 
forcing effect in the second quadrant without penetrating into the wedge Z,OR,. 

Similarly, the waves associated with S- propagate in all directions without 
penetrating into the smaller of the two wedges R,OR, and R,OA!I,, which always 
includes the first quadrant. (For a = 30" this wedge is given by R,OR, in figure 2.) 
The crests Pz are cusped curves with their arms asymptotic to OR, and OR,. 
OJl,  being the cusp locus. This system, say system 11, has a caustic along the 
downstream part of the forcing line (the caustic point being denoted by a solid 
circle in figure 2 ) )  which leads to accumulation of crests to the right of it. The 
variation of the wavelength along Pz is similar to that along P, but the nature of 
the phase velocities is quite different. An interesting feature is that the waves 
corresponding to V which are propagating along the directions OC and OC' 
inclined at angles ?r + 1, and - $, to the forcing line are independent of time and 
have zero phase velocity relative to the fluid, where 

= cot-l[(sinacosa -I ao)/sin2a]. (15) 

The phase velocity changes its direction to the opposite side as one passes C or C'. 
The crest within CC' propagates upstream with a speed much less than U while 
the portion outside CC' travels in the opposite direction with a speed increasing 
gradually to infinity as one moves towards OR, or OR,. Waves with low wave- 
numbers, associated with the curve .G49%'0, have a tendency to influence the up- 
stream side in the second quadrant without penetrating into the wedge Z,OR,. 
The fluid region that could be disturbed by this system is always bigger than that 
for system I. 

Case (ii). sina < co < 1 

The wavenumber curve consists of two infinite curves. The upper one is a nodal 
curve with its head above the I ,  axis and with the origin as the nodal point. The 
'legs', which are below the 1, axis, are asymptotic to n, = f sin a - go. The lower 
curve passing through 9, the double point of S ,  and 95' goes to +a and is 
asymptotic to n, = T sin a - go. It has two points of inflexion A, and A, which 
are on either side of the n axis (see figure 3). 

The waves associated with the lower curve propagate in all directions in the 
wedge M,OM, and there are two waves of different wavelength along each 
direction. The waves associated with the left and right 'legs' of the nodal curve 
propagate respectively in the wedges ZiOR,  and ZiOR, and there is only a single 
wave along each direction. Hence the waves associated with S- propagate mostly 
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FIGURE 3. The wavenumber curve S and the corresponding lines of constant phase for 
c0 = +(l +sin a) and a = 30". -, S ;  - - -, lines of constant phase. Other notation as 
in the figures 1 and 2. 
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downstream and are confined to the biggest of the wedges formed by OM,, OR,, 
OM, and OR, (in figure 3 this wedge is given by M30R4). Also in the smallest 
wedge formed by these directions (R,OH, in figure 3) there are three waves along 
each direction and there is a concentration of disturbance close to the downstream 
part of the forcing line which is conspicuous compared with the rest. The wave 
crests P, are shaped like an infinite inverted funnel with two cusps, the respective 
cusp loci being OM, and OM,, and they extend asymptotically to OR, and OR,. 
The wave crests touch the downstream part of the forcing line from either side, 
forming a caustic along it from both sides. The caustic points are denoted by 
solid circles in figure 3 and the phase velocities are also indicated therein. The 
portion between the caustic points corresponds to the lower curve and that 
outside to the ‘legs’. As in the previous case the waves along OC and OC‘, the 
two directions indicated by the arrows at  g, have zero phase velocity and as one 
moves along P,, V, changes its direction four times. The portions of P3 below 
C’ and the lower caustic point move towards the downstream part of the 
forcing line; the portion between C and the upper caustic point moves in the 
direction of the forcing effect, while the other portions move away from the 
downstream part of the forcing line. Even though there is an accumulation of 
crests on both sides of the downstream part of the forcing line this is more marked 
on the left side. The shorter waves are found close to the forcing line while the 
longer ones are found close to OR, and OR,. Thus the system I11 associated with 
S- propagates mainly downstream with inverted-funnel-shaped crests. 

The waves associated with S,, the head of the nodal curve, propagate in all 
directions without penetrating into the wedge R,OR, on the upstream side, with 
parabola-like wave crests, which are asymptotic to OR, and OR, and which 
travel in the same direction as that of the forcing effect with speed much greater 
than U .  

When a. = 1 the nodal curve becomes a cusped curve with a cusp at  the 
origin, the n axis being the coinmon tangent (see figure 4). The lower curve 
becomes slightly stretched, but otherwise has the same features. Consequently 
system IV, associated with S,, disappears completely and system 111, associated 
with S-, retains the same characteristics except that now the wedge R,OR, 
coincides with the x’ axis, a line fixed in the forcing effect and parallel to the 
x axis. So for cro = 1 there is only one system, namely system 111, propagating 
in all directions below the x’ axis, its funnel-shaped crests being asymptotic 
to this line. 

Case (iii). a. > 1 

Here the upper branch crosses the origin and lies completely below the 1, axis. 
Like the lower branch it also passes through V and goes to rt 00, is asymptotic 
to n, = & sina - a,, and has two points of inflexion A4 and A5 on either side of 
the TL axis. Hence system I11 propagating in all directions below the x’ axis 
folds back on itself and propagates in the wedge M40M5. The waves associated 
with the lower branch as usual propagate in the wedge M,0M3. There are four 
waves of different wavelength along each direction in the region common to 
both the wedges and only two outside. The shape of the wave crests P5 is shown 



Waves in rotating fluids due to travelling forcing effects 141 

FIGURE 4(a). For legend see p. 142. 

in figure 4 ( b ) .  It has four cusps, one on each of the boundary lines of M,OM, and 
M40M6 and touches the downstream part of the forcing line from either side. 
The portion above the caustic points corresponds to the lower branch of S and 
the one below to the upper branch. The nature of the phase velocities is similar 
to that on P, with the addition that the new portion M4M, travels downstream. 
Thus all the waves here reduce to a single system propagating downstream with 
inverted-funnel-like crests. 

Case (iv). (ro = sin a 

In this case the wavenumber curve S splits into two parts: the nodal curve S, 
defined by 

(2 sin CL + n,) I: -I- I, sin 2a + [(sin a + nJ2 - cos2 a] .n, = 0 (16) 

and the straight portion 
n, = 0. 

8, has its nodal point at  %? and cuts the I, axis at  two points: the origin and 
8 ( - cos a, 0). The left and right ‘legs’ of S, extend to T co and are asymptotic to 
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FIGURE 4. Shapes of (a) X and ( b )  lines of constant phase for CL = 30". 
-, c0 = 1 ; - - -, go = 1.5. 
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FIGURE 5. The wavenumber curve S for uo = sin a and u = 30". S,  = S,+S-. 

n, = - sin a - v0. The shape of S and the arrows are shown in figure 5. The arrows 
on the head of S, point inwards for the portion above the I, axis and outwards 
for the portion below and downwards for the 'legs'. We shall use the notation 
S,  to denote S, in n1 > 0 and S- for S, in n, < 0. The arrows point upstream on 
the straight portion (17) within S, and downstream otherwise. The reason for 
drawing the arrows in this manner will be clear if we compare the wavenumber 
curves in figures 3 and 5 and observe that as a, increases the straight line O& 
and S, become the head of the nodal curve in figure 3; the straight portion to 
the right of the origin becomes the right 'leg'; the curve %'€ and the straight 
portion (17) beyond d become the part of the lower branch, namely, the curve 
to the left of 9. It should be noted that the direction of the arrows jumps fiom 
one side to the other as one crosses the origin or 8. 

Let OT and OT' be the directions pointed by the arrow at B when € is 
approached fiom n, < 0 and n, > 0 respectively. Let QOQ' denote R,OR, when 
a. = sinol. The waves corresponding to S, consist of a single system of waves, 
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FIGURE 6. A typical shape of the lines of constant phase for bo = sin CL and cc = 30'. The 
broken lines represent the wave crests in the 'column'. 

say system VI, propagating in all directions outside the wedge Q O T  with 
vertex angle 7r - 2a -t- x, where x = cot-l(+ tan a) .  This wedge includes the entire 
first quadrant and part of the second and third quadrants. The shape of the 
wave crests of this system, say P6, is shown in figure 6. They all originate at  OT' 
and extend asymptotically t o  OQ. They travel in the direction of the forcing 
effect with speeds much gxeater than U. 

The waves corresponding to that branch of 8- which starts from the origin 
propagate in all directions in ZIOQ'. The other branch of X- starting from 8 



Waves in rotating Jluids due to travelling forcing effects 145 

has a point of inflexion A2 to the right of the n axis. Hence the waves associated 
with the curve &A2 propagate in the wedge TOM,  and those associated with the 
curve beyond A2 propagate in ZiOM,. Putting all these facts together we see 
that the waves associated with S- consist of a single system of waves, say system 
VII, mostly propagating downstream in the bigger of the two wedges TOQ' 
and TOM,. The associated wave crests P, are cusp-shaped with O N 3  as the cuspal 
locus. Their right arms are asymptotic to OQ' and the left arms terminate on OT 
(see figure 6 ) .  These crestsform a caustic along the downstream part of the forcing 
line. Here again the phase velocity of the waves along the two directions OG 
and OC' is zero relative to the fluid. The part of P, within COC' travels towards 
the forcing effect and the part outside travels downstream. The phase velocities 
on P7 beyond C' increase indefinitely as one moves towards OQ'. The wave crests 
of both the systems become parallel to the forcing line in TOT'. 

The waves associated with the straight portion n, = 0 are one-dimensional 
waves of fixed frequency, namely, 

(18) 

which are independent of 2,. The arrows on this portion mean that these waves 
propagate parallel (either up or down) to the forcing line. All the waves with 
transverse wavenumbers satisfying 

exp [i( - t sin a + l , ~ , ) ] ,  

-cosa < 1, 6 0 (19) 

propagate upstream whereas waves with wavenumbers outside (19) propagate 
downstream. Alternatively, the group velocity 

a! = - (1 + COS all1) k1 
of these waves is either parallel or antiparallel to U according as I ,  satisfies (19) 
or not and hence they propagate in the aforesaid manner. 

Each wave originates at  some point of the forcing effect and thereafter, being 
independent of xl, propagates (either up or down) along a line through that point 
and parallel to the forcing line. If x1 = L, and x, = L,, L, < L,, are two lines 
which are separated by a distance L (the transverse dimension of the forcing effect) 
and enclose the forcing effect then all the waves associated with (17) should be 
confined to  the region between these two lines. The region outside these twTo lines 
is not contaminated with the waves with n, = 0 but it may contain waves 
associated with S,. The condition (19) may be rewritten as 

-€-I cos CL < E ;  < 0, 

where I ,  = €1; (since all the space and wavenumber variables are stretched by 6). 

This shows that when the transverse dimension L of the forcing effect becomes 
small (so that E is large) the interval (19) also becomes small and the forcing effect 
cannot significantly excite upstream waves. But as the transverse dimension 
increases the waves satisfying (19) can be increasingly excited. The forcing effect 
excites these waves, and as they are not subjected to any attenuation (because the 
associated part of the wavenumber curve is a straight line), after a long enough 
time they extend far upstream and downstream thus forming a 'column' of 

1 0  FLM 
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waves ahead and behind akin to r (the two-dimensional counterpart of the 
Taylor column). The waves in the upstream ‘column’ are subjected to a low-pass 
filter which admits only waves satisfying (19),  and the do.ivnstream ones are 
subjected to the complementary high-pass filter. 

The crests of these waves are always parallel to the forcing line and their 

phase velocities are given by v, = (sina/Z,) 2, 

where i is a unit vector along the x1 axis. The phase velocity of the waves with 
1, > 0 is in the positive-x, direction and each wave crest first appears at  x1 = L,, 
travels with a speed sin all, towards x1 = L, and disappears at  x, = L,, whereas 
for I, < 0 the situation is the reverse. So the ‘column’ ahead of the forcing effect 
is composed of waves whose crests travel from right to left with speeds greater 
than tana. But the ‘column’ behind contains crests which travel in both the 
directions; those travelling from right to left are slower, with speeds less than 
tan a, while the speeds of those travelling from left to right range over all values 
between 0 and co. 

There is a basic contrast between the structures of the ‘ column ’ and X First. 
the (column’ is composed of oscillatory (progressive) waves as opposed to steady 
(standing) waves. The upstream (column’ is subjected to an asymmetric low- 
pass filter and the downstream F contains waves of all wavelengths. Besides, 
on the downstream side there is a superposition of waves over certain wave- 
numbers, a consequence of the doubly covered nature of the wavenumber curve. 
This has no counterpart in the present situation. Nevertheless, in the next section 
it is shown that when a + 0 the present ‘ column ’ does tend to thereby showing 
that the ‘ column ’ is a counterpart of 9 for an arbitrary inclination of the forcing 
line. 

As was observed by Lighthill (1967), tlie difficulties experienced in estimating 
the amplitudes i n r a r e  mainly due to the twice-covered part of the wavenumber 
surface, whereas for a + 0 no such situation arises, for the associated wave- 
number curve is a single straight line n, = 0. If the integral (3), after go = sina 
has been invoked and X( ) replaced by n,S,( ), is evaluated then it may be seen 
that for the waves associated with n, = 0 the main contribution comes from the 
simple pole n, = 0. This simple pole moves into the upper half of the complex-n, 
plane when go is changed to go +is if (19) is satisfied, otherwise it moves into the 
lower half-plane. Thus one gets 

f7re-itsina11 for z1 > 0, 

( r e - i t s i n a  (1, + I,) for z1 < 0, q1= 

where 

-cos u 

I, = ( - i) J eizizl dZ,, 

and 

m 
I, = 1 (- i) J eihxi dl ,  

J =  

0 

H(Z1, 0, sin a,  a) 
1, sin a(1, + cos a) * 
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Here we notice that the disturbances are progressively amplified on the up- 
stream side as b, + ( - cos a)+ and on the downstream side as I ,  += ( - cosa)- 
even though no waves appear on the upstream or downstream side for values 
beyond these limits. Lighthill (1967) reasons that this is due to the fact that 
a forcing effect of given transverse dimensions can excite a wave component 
most powerfully when the group velocity is very close to the speed of the forcing 
effect because the time available for the wave component to escape from the 
forcing effect is then the greatest. However, mechanisms like dissipation, non- 
linearity or finite duration of the forcing effect would generally restrict the 
amplitudes from attaining extremely large values around such wavenumbers. 

4. The effect of varying a and go on the wave pattern 
The wave pattern in the two extreme cases a = 0 and a = &n, which could 

be derived from Nigam & Nigam (1962) and Stevenson (1969), is given briefly 
in the introduction. In  this section it is shown how the pattern described in § 3 
is altered in the two extreme cases a = 0 and a = in. Incidentally this helps one 
envisage the nature of the pattern for general a. Also the modifications brought 
into the pattern as a, varies (a being fixed) are also pointed out. 

As a, increases the entire region Icro+n,J < 1 containing S moves in the 
negative-n, direction. Also S is constrained to cross the I ,  axis only through the 
origin. These two features bring about certain important changes in the shape 
of S and hence in the pattern. A consequence of this translation is that the 
wavelength of waves associated with S ,  increases while that corresponding to 
S- decreases. Another important point is the nature of the arrows at the origin, 
which in some cases determines the enveloping wedge. The two directions R,OR, 
and R,OR, are always equally inclined to the n axis and are independent of a. 
But as go increases they turn away from the n axis, coinciding with QOQ' and 
the forcing line respectively when go = sina. When go = 1, they both coincide 
with the x' axis. But when a varies, go being fixed, they simply rotate rigidly 
about the origin. The variation of q5 is shown in figure 7. 

Case (i). 0 < a, < sin a 
As go increases towards sina, S, in figure 1 undergoes the following changes. 
The asymptote n, = sin a - uo tends to the I ,  axis and the point of inflexion dl 
tends to € (figure 5). Also the right branch of X+ tends to the I, axis, the curve 
beyond dl on the left branch tends to the negative-1, axis beyond & and the 
curve O d A ,  becomes O d 6  in figure 5. In  the limit a, -+ sina all the above 
quantities coalesce with their respective limits. Consequently the cusp locus 
OAl, turns away from the downstream part of the forcing line and coincides with 
OT' when go = sin a. If gl(a) represents the locus of the point of intersection of ,8, 
and q5 -a (the points denoted by small circles in figure 7) then it is not difficult 
to see from figures 7-9 that for a > 19" and go < crl(a) system I is confined to 
the wedge R,OR,, whose vertex angle n - 2q5 decreases as go increases; whereas 
for all other a and go it  is confined to R,OM,, of vertex angle n - a - q5 +/3,, and 

10-2 
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FIGURE 7. The graphs of PI, PZ, p3, q5 + a and $-a  for a fixed CL. - - - - -, pl; - -, P2 ; 
- - -, pa; -, q5 fa. The numbers on the curves denote the value of a. Points of inter- 
section: 0, p1 and $-u; 0, Pz and $+a; A, and $-.. 

this widens to coincide with T’OQ as go -+ sina. The two arms of PI, like OR, 
and OR,, move towards the downstream part of the forcing line while the cusp 
moves away. The phase velocities increase as cro increases. A comparison of PI 
and PG shows that as c0 + sin a the caustic point tends to - co along the down- 
stream part of the forcing line and the portion between the cusp and the caustic 
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3 
3” 

a 

FIGURE 8. The graphs of @,(a), a2(a) and a,(cc). The letters written on either side of a 
curve give the enveloping wedge of the associated wave system for the values of a and 
go on that side. 

point tends to  become parallel to the forcing line while the cusp moves onto OT’. 
Thus when go = sin a this system splits into two parts. The waves associated with 
the curve O d A ,  become system VI and the rest become straight waves 
propagating in the downstream ‘column’ (cf. case (iv) of 5 3). 

As go increases the asymptote n, = - sin a - go of S- moves downwards. So 
does the whole of S- except the curve 0%’ which is to the left of the 1 axis. This 
curve W moves towards the I ,  axis and when co = sin a becomes the curve O€%, 
which has a corner at  d (see figure 5). The graphs of Pz, the angle between OM2 
and the downstream part of the forcing line, are shown in figure 7. This 8, has 
a maximum value of &n when a = 0 and go = 0 and decreases as a and/or C T ~  

increases. If cr2(a) denotes the locus of the point of intersection of p2 and a + q5 
(the points denoted by squares in figure 7) then from figures 7, 8 and 2 it may be 
seen that for a < 19” and go < cr2(a) system I1 propagates outside the wedge 
R30Mz,  of vertex angle m + a - q5 -p2, which increases as go + CT*(U). For all 
other a and go it propagates outside R,OR,, which shrinks towards Z,OQ’ (in 
figure 6) as go -+ sin a and whose vertex angle m - 2$ decreases to m - 2a. Thus 
for all a, the region influenced by system I1 diminishes or spreads out as go 

increases according as it propagates outside R30Mz or outside R,OR,. The arms 
of Pz turn outwards, occupying larger regions; in particular the arm asymptotic 
to OR, tends to become parallel to the forcing line and the cusp locus turns 
towards the downstream part of the forcing line. The wave crests slow down as 
CT, increases. When go = sina this system splits into two parts. Part of the wave6 
associated with the curve to the left of 0% become straight waves in the upstream 
‘column’ while the rest become system VII (cf. case (iv), 9 3). 

When go decreases the wavenumber curve and the pattern undergo changes 
which are exactly opposite to those described above. The double point %‘ moves 
towards the origin and coincides with it when go = 0, and S becomes symmetric 
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about the origin. That is, whenever k, is a point on S ,  - k, is also on S and the 
arrows at  the two points are in the same direction. Hence the wave systems 
associated with S, and S- become identical (cf. 5 1). So as a. -+ 0 systems I and 
I1 tend towards each other and collapse into a single system which is actually 
a superposition of two identical wave systerns.t Hence for all a the periodic 
nature of the forcing effect splits the waves into two systems which are otherwise 
coincident . 

The two wave systems I and I1 are possible only when a $: 0. Here it will be 
shown how these systems change with a. For a fixed a. the region I vo + n,l 6 1 
containing S does not change with cc but as cc increases the 1 and n axes and S 
in the neighbourhood of the origin rotate about the origin in the anticlockwise 
sense, effecting the following changes. The two points 

d = [-(i-a,)tana,  -(l-aO)] and B’= [(i+cr,)tana,  -(l+a,)] 

move away from the n, axis along the lines n, = 5 (1 - ao) respectively and 
= [ - r 0 c o t a ,  -ao] moves towards the n, axis along n, = -goo. The two 

asymptotes move away from each other. Consequently the two branches without 
points of inflexion move away from the I ,  axis and bend more in the neighbour- 
hood of the origin. The curve moves inwards while the curves beyond d 
and 55’ get squeezed between the lines n, = k (1  - a,) and their respective asymp- 
totes. In  this process dl and A. move away from the n, axis, the arrows at  
these points tend to become parallel to the n, axis and the whole ofS gets deformed 
t o  become symmetric about the I axis. Finally when a -+ in the I and n axes 
coincide with the n, and I, axes; d, dl and 9, A2 respectively go to q a; ?? 
moves onto the n, axis and the whole of S becomes symmetric about the n1 

t In Subba Rao & Prabhakara Rao (1971) it is pointed out that the group velocities of 
the waves corresponding to k and - k are identical and that the phase velocities are 
equal in magnitude but opposite in direction. This led to the ambiguity of two phase 
velocities at each point of the surface of constant phase. This ambiguity was avoided by 
applying the radiation condition, which was shown to pick only one out of the pair k to 
be in agreement with Lighthill’s comment. These two conclusions are wrong and they 
are a consequence of ignoring the sign of go+ Un. It is not difficult to see that in all the 
situations concerning this paper whenever there is symmetry vvith respect to the origin, 
the phase and the group velocities of the waves with wavenumbers k k are identical and 
they both satisfy the radiation condition. But this is not in contradiction to the general 
statement of Lighthill (1960, p. 407, second paragraph) that the situation satisfying the 
radiation condition takes only one out of the pair k k. For, the above statement is true 
if the wavenumber surface, for a particular frequency, is a closed surface not enclosing 
any singularities; then the arrows will either be always outwards from the surface or 
always inwards. This is because the frequency will either increase outwards from the 
surface or increase inwards. It is in such cases, owing to the symmetry with respect to 
the origin, where the arrows at k and - k will lie in opposite directions, that the above 
general statement applies and hence only one of them contributes (M. J. Lighthill, private 
communication). But all the steady-state problems mentioned in this paper (including 
that of Subba Rao & Prabhakara Rao) are exceptions to the above comment for the wave- 
number curve always has a singularity a t  the origin whether the surface is closed or not. 
This makes it possible for the frequency to increase inwards on a part of the wavenumber 
surface and outwards on the other part no matter whether the surface is closed or open. 
As a result the arrows a t  k k lie in the same direction and hence the two waves are super- 
posed and in that direction. 
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axis as was described in the introduction (cf. p. 132; 0 < IT; < 2n). If a decreases 
so that sina > go then S undergoes exactly contrary changes. From (11)  it 
follows that when a increases R,OR, and R, OR, undergo a rigid rotation about the 
origin along with 1 and n axes while the cusp loci OM, and OM, turn towards the 
downstream part of the forcing line. Therefore the two wedges R,OR, and R,OR, 
associated respectively with systems I and I1 simply rotate about the origin 
through an angle equal to the increase in a. crl(a) exists only for a > 19' and is 
an increasing function of a. But g,(a), defined for a < 19", is a decreasing 
function of a. This implies that the range of go for which system I is confined 
to R,OR, increases with a and the range of go for which system I1 is confined to 
R,OM, decreases. 

To start with let system I be confined to R,OM,. As a increases R,OM, will 
decrease until al(a) = go, that is, until OH, crosses OR,, and from then on the 
disturbed region will be confined to R, OR,, which will simply rotate about the 
origin. Like R,OR, the wave crests also rotate in the anticlockwise sense such 
that they always touch the downstream part of the forcing line. In this process 
t,he cusps move towards the downstream part of the forcing line and the caustic 
points move closer to their respective cnsps. When a = 8. the caustic points 
coincide with the cusps and P, becomes symmetric about the downstream part 
of the forcing line. System 11, which propagates outside R30R, or R301V, 
according as g2(a)  2 go, and the associated crests undergo similar changes. The 
wavelengths of the waves corresponding to the two portions beyond Yae and 28 
decrease and the wavelengths of the waves associated with the rest of S increase. 
As a increases the region that could be influenced in the second quadrant by 
the two systems, particularly system 11, diminishes while they gain influence 
on an almost equally large region in the fourth quadrant. That is t o  say, as a 
increases the upstream influence in the second quadrant decreases. This upstream 
influence for all a and go depends on the smallness of sin a - go;  the smaller this 
quantity the greater is the disturbed region in the second quadrant. It must be 
noted that under no circumstances, for 0 < a < +T, will systems I and I1 be 
able to penetrate into the first quadrant. 

Case (ii). sin a < go < 1 

The head 8, of the nodal curve shrinks to the origin when go + 1 and the arrows 
at the origin turn away from the n axis to coincide with the 1 axis. So the wedge 
R,OR,, which is free of system IV, is compressed towards the region below 
the x' axis (a line perpendicular to the axis of rotation) and the influence of 
this system on the upstream side, particularly on the first quadrant, decreases. 
The wave crests are straightened and move further down from the forcing 
effect. This system disappears completely when go = 1. The wavelengths and 
the phase velocities of this system increase indefinitely as go -+ 1. When 
uo -+ sina, S,  expands and becomes the straight portion 08 and the curve 
&do above it. Now the wedge R,OR,, the wave crests P, and all other related 
quantities undergo changes exactly opposite to those in the case go + 1.  When 
go is sufficiently close to sin a this system influences the entire plane except for 



152 C. V .  Prabhakara Rao 

the small wedge R,0R3 in the second quadrant. When uo -+ sina, in the neigh- 
bourhood of 8, S,  develops a sharp bend which becomes the corner at  6. For 
this reason all the waves propagating along various directions in the first quad- 
rant, except those parallel to the forcing line, are eliminated. Thus when 
go -+ sin a the pattern splits into the straight waves in the upstream ' column ' 
and system VI. The portion of P3 in the first quadrant becomes parallel t o  the 
forcing line while the rest becomes P6. 

The modifications to 8- brought about when go-+ 1 may be seen easily by 
comparing 8- in figures 3 and 4. The angles b2 and p3 are largest when (ro = sin CI 

and decrease gradually as go -+ 1 (cf. figure 7). Therefore the cusp loci O X 2  
and ON, turn towards the downstream part of the forcing line while the wedge 
R,OR, widens to coincide with the x' axis. The portion of P, lying between the 
cusps shrinks and the parts going to infinity turn outwards until they become 
asymptotic to the x' axis. The wavelengths and phase velocities of waves propa- 
gating along any direction decrease. If cr,(a) denotes the locus of the point of 
intersection of p3 and $-a (the points denoted by triangles in figure 7) then 
from figures 3, 7 and 8 the following may be seen. For a > 45" the system is 
confined to R,QR, for all go. I f  19" < a < 45" then the system is confined to 
X30R4 for cro < cr, and to R,OR, for u,, > v,. But if CI < i 9 O  then it is confined to  
~II,0~~2,M,0R,orR20R,accordingassina < go < cr2,cZ < go < g3org3 < go i I. 
-4s cro increases the wedges IM.01M2 and &OR, shrink whereas R,0R4 widens. 
When go -+ sin a the right 'leg' of 8- in figure 3 tends to  the positive-1, axis and the 
curve beyond 9 of the lower branch goes inGo the curve V& and the straight 
portion beyond Q (cf. figure 5). The rest of S- simply moves upwards with 
ininor changes. So when go increases slightly from sina the straight waves in 
the downstream 'column' and system VI I  combine to form system 111. This is 
because the corner at 8 becomes a smooth bend and the waves associated with 
this bend will propagate in the third quadrant, filling the gap between the 
downstream 'column' and system VI I  to form system 111. The straight waves 
iii the downstream ' column ' with 1, < - cos a and I, > 0 will now become waves 
propagating to the left of the downstream part of the forcing Line, the corre- 
sponding parts of P, being the curve between C and the caustic point, and the 
portion below the caustic point respectively. 

Keeping cro fixed if a is allowed to decrease to zero the nodal curve rotates 
about the origin in the clockwise sense while the lower branch rotates in the 
anticlockwise sense so that &? moves to the n, axis, V goes to - co and both the 
asymptotes move towards each other, making S symmetric about the n, axis. 
In this process the wedge R, OR, rotates rigidly about the origin while OM, turns 
towards the downstream part of the forcing line and OM2 turns away so that 
p3 and p2 tend to become equal. The wave crests P, also rotate in the clockwise 
sense in such a way that they always touch the downstream part of the forcing 
line from either side. The caustic points move towards each other and coincide 
when a = 0, and the entire wave pattern becomes symmetric about the down- 
stream part of the forcing line as was pointed out in the introduction for 
0 < cr; c 2Q. The wavelengths and phase velocities of waves associated with 
the right 'leg' and the lower branch in 1, < 0 increase and for the rest of S- they 



Waves in rotating Jluids due to travelling forcing eflects 153 

decrease. 8- and the associated wave pattern undergo exactly reverse changes 
when a increases such that sina < go. System I V  also simply rotates clockwise 
about the origin and tends to become symmetric about the downstream part of 
t,he forcing line. As a result the upstream influence in the third quadrant de- 
creases. The phase velocities and the wavelengths associated with this system 
increase. The crests P4 move slightly away from the forcing effect. Here again 
the upstream influence due to system IV in the first quadrant depends on the 
smallness of the quantity go - sin a. 

Case (iii). CT > 1 

As cro increases, owing to the downward motion of S, the points d, 9 and V 
move farther and farther from the n, axis, stretching the two branches of S. 
All the cusp loci turn towards the downstream part of the forcing line, diminish- 
ing the extent of the disturbed region. The wave crests also accordingly shrink 
in size and move closer to the forcing effect. The wavelengths and phase velocities 
of the waves in any particular direction decrease as go increases. When a in- 
creases (decreases) the entire wave crest rotates in the clockwise (anticlockwise) 
sense such that it always touches the downstream part of the forcing line from 
either side. When a = 0 or a = @, we recover the patterns described for 
a; > 2 0  in the introduction. 

Case (iv). CT,, = sina 

The wavenumber curve associated with the pattern generated by a steady forcing 
effect travelling along the axis of rotation consists of a unit circle (the radius of 
bhe circle would be 2Q/ U in terms of dimensional variables) and two coincident 
lines or a sphere and two coincident planes when the forcing effect is axisymmetric 
(cf. Rarity 1967; Lighthill 1967). The waves associated with the circle consist of 
two identical wave systems, superposed on each other, of cylindrical waves of 
wavelength r U / Q  propagating in all directions below the forcing effect with 
semicircular wave crests. The waves associated with the straight portion propa- 
gate withiny. If a distinction is made between the two coincident lines then 
according to the Lighthill (1967) one of the lines has all its arrows pointing 
downwards while on the other line they point upwards on the portion within the 
circle and downwards on t,he rest. This implies that there are two waves of the 
same wavelength corresponding to each point on the coincident lines, and if they 
are associated with a point on these lines outside the circle then they are found 
on the downstream side superposed on one another but if they correspond to the 
points within the circle then one of them is found on the upstream 5 and the 
other downstream. 

When a + 0 it is natural to expect the ‘column’ and systems VI  and VII  to 
become r a n d  the cylindrical waves. One may at  once observe that when a = 0 
equation (7) reduces to a circle and two coincident lines. But greater insight may 
be gainedregarding how the additional waves in absent in the ‘ column ’, would 
split up from the other systems and be added to form Z This is done by observing 
how the wavenumber curve in figure 5 becomes a circle and two coincident lines 
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when a -+ 0 (unless otherwise stated the centres of all the circles mentioned will 
always be at the origin). A further study of S with 01 -+ in would help one to 
envisage the wave pattern for any a. 

When a -+ 0,  8, is subjected to a rotation as well as a translation, since 
v0 = sina --f 0. The asymptote n, = - 2 sin 01 moves towards n, = 0. The entire 
head of S, enlarges and rotates clockwise about the origin. In  this process 
d -+ (0, i), 33' + (0, - l) ,  5Y + d --f ( -  1 , O )  and A2 + ( 1 , O ) .  Consequently the 
curve OV and the left leg of S, become the negative-1, axis. The rest of 
the head, Odd?%', owing to  the rotation and the enlargement, becomes the part 
of the 1, axis between the origin and ( 1 , O )  and the unit semicircle in n, > 0. The 
curse VgA?., becomes the unit semicircle in n, < 0 and the curve beyond A. 
becomes the I ,  axis beyond ( 1 , O ) .  The arrows a t  the origin turn (clockwise) 
towards the n, axis and the arrows at  6 turn (anticlockwise) towards the I, axis. 
The wavenumber spectrum ( - cos 01, 0) enlarges to ( - 1 , O ) .  Also, since the portion 
of the head in the first quadrant goes into n, = 0 , O  < I ,  < 1 with arrows pointing 
up and a circular arc when 01 = 0 the spectrum jumps to ( -  1, 1)  as required by 
Lighthill (1967). Since the arrows lie on the same side of the curve as a + 0 it is 
not difficult to see that the nature of the arrows also agrees with Lighthill (1967). 

The implications of these changes in S with special reference t o  system VI 
associated with S,  are studied here. The wedge T'OQ, which is free of this sytem, 
shrinks towards the first quadrant, thereby spreading the influence of the 
system over all the other three quadrants. Along with OQ, P6 curves inwards, its 
point of intersection with the x, axis moves towards the origin, the curve below 
it tends to a semicircular shape and the part above it tends to become parallel 
to the forcing line. The wavelength of the waves propagating below decreases 
towards the uniform value nUl!2. The phase velocities also decrease with a. 
In the second quadrant a sort of stretching of waves over certain sets of wave- 
numbers and accumulation around certain others take place. This is because, 
as CL -+ 0, S, develops a sharp smooth bend for suEciently small a which becomes 
the corner at  ( 1 , O ) .  The slope almost changes from a to in in the iieighbourhood 
of this bend. The portion between the originand the bendelongates and straightens 
while the curve above tends to a circular shape. Therefore the density of waves 
propagating between the negative-x, axis and OQ decreases while more and more 
waves are added t o  the region below the x1 axis and the one close to OQ. More- 
over, the amplitude of the waves near OQ is less and less attenuated, since the 
associated wavenumber curve straightens up. Thus, like a rubber sheet which is 
being stretched the region between the negative-x, axis and OQ becomes less 
and less contaminated with the waves of this system while the region close to 
OQ is intensified. Finally when a = 0 all the intermediate waves vanish, splitting 
system VI into two, the straight waves with transverse wavenumbers 0 6 I ,  < 1 
and the cylindrical waves below. Also, the wave spectrum - cos a < I ,  ,< 0 of 
the waves in the upstream 'column' enlarges to ( -  1 , O )  and the straight waves 
splitting out from system VI  fill the missing gap between the upstream ' column' 
and the upstream 9- while the rest of system VI forms one of the coincident 
systems of cylindrical waves. 

System VII will be divided into two parts : the first associated with the curve 
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a 
FIGURE 9. Graphs o i  ,02 and 4 +a for c,, = 0 (solid line) and for co = sin a (dot-dashed 

line). The broken line represents the graph of x, the vertex angle of the wedge 2,OT.  

&%'37d2 and the second with the rest of S-. Waves in the first part propagate 
along all directions between OT and OM, and the shape of their crests is given by 
the part of P7 which is to the left of the cusp. Waves in the second set have the 
right arm of P7 as their crests and propagate in the two wedges Z; OM, and 2; OQ'. 
From the loci of the points of intersection of the line u,, = sina: with p2 and 
q5 +a curves (see figures 7 and 9) it may be seen that p, > q5 + a  for a < 11.3" 
and so system VII is confined to TOM, and to TO&' for a > 11.3". As cc decreases 
TOM, spreads out while TO&' shrinks. Also, as a decreases the wavelengths of 
the waves propagating in and close to the wedge TOG increase and the wave- 
lengths of all other waves decrease. The phase velocities in general increase. 
As a --f 0 the waves in the first set spread out to propagate in all directions below 
the forcing effect (since the associated wavenumber curve becomes the unit 
semicircle in the lower half-plane), their wavelengths tend to the uniform value 
x U / Q  and the correspoding wave crests tend to a semicircular shape. Thus 
this set of the waves becomes the other coincident system of circular waves on 
the downstream side. The waves belonging to the second part turn towards 
the downstream part of the forcing line (since the associated wavenumber 
curve becomes the entire I ,  axis except 0 < 6, < 1) and become straight un- 
attenuated waves propagating downstream and are added to the downstream 
' column '. The intermediate waves, associated with the bend containing d2 and 
propagating between these straight waves and OM,, become scarce and vanish 
when a = 0 as described above, These straight waves will now fill the gap between 
the downstream 'column' and the downstream F, eliminating the comple- 
mentary high-pass filter restriction required by F. 
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As a increases the whole of&,,, along with the 1 and n axes, rotates anticlockwise 
and translates downwards such that V --f (0, - 1) and 93 and J12 move away from 
the n, axis. The head of S, gradually crosses the I ,  axis making & and& tend to 
the origin. The asymptote also moves downwards and each 'leg' tends to become 
the image of the other in the 1 axis. Finally when a = &r the nodal curve 8, lies 
completely below the 1, axis, touching it at  the origin, and becomes symmetric 
about the I axis (and thus the n, axis). The points J12 and 99 go to inSnity in the 
positive-1, direction and the asymptote becomes n, = - 2. In this process the 
part of O b  with arrows pointing upwards shrinks gradually to the origin while 
the portion with arrows downstream increases to cover the entire I ,  axis. 

Therefore, as a increases the wavenumber spectrum of the waves in the up- 
stream ' column ' decreases, eliminating the shorter waves and adding them t,o 
the downstream 'column'. Finally when a = 4;. all the waves appearing in the 
upstream 'column' disappear and so does the upstream ccolumn' itself while 
the downstream one persists without any restriction on wavelengths. The two 
lines QOQ' and TOT", as a increases, rotate in opposite directions to coincide with 
the forcing line. So the region influenced by system VI gradually decreases. The 
wavelengths of this system increase without limit, P6 moves farther and farther 
from the forcing effect and this system disappears when a = Qm. System VII 
spreads out, influencing larger areas in the first and the second quadrants as OT' 
and OQ" turn towards the positive-z, axis. So this system penetrates into the first 
quadrant as a exceeds 45" and this influence in the first quadrant increases to 
affect the entire first quadrant as a -+ &i-. The cusp locus of P, turns towards the 
downstream part of the forcing line and the arm in the fourth quadrant curves 
to become asymptotic to Ox,. Finally when a = this system propagates in all 
directions with w-shaped crests which are symmetric about the forcing line, 
which is a common tangent a t  the cusps. This wave pattern will be the same as 
that discussed in the introduction for u; = 2Q. 

5. Concluding remarks 
For 0 < uo < sin a the oscillatory nature of the forcing effect splits the steady- 

case (cro = 0) identical wave systems into two. One of these systems propagates 
in all directions without penetrating into an upstream wedge containing the 
first quadrant and the other propagates in a wedge below the z' axis, a line 
parallel to the axis of rotation. The wave crests of both the systems have the 
shape of a cusped curve. The crests of the first system travel upstream with 
speeds greater than U whereas those of the other system travel partly upstream 
and partly downstream. As cr,, increases towards sin a the bigger system spreads 
out to propagate in all directions outside the first quadrant and the other system 
shrinks. When cro = sina part of these two systems splits further, forming 
a family of straight unattenuated waves travelling (up and down) in a ' column ' 
parallel to the forcing line and two other systems. 

For sina < cro c 1 there are again two systems of waves, one with inverted- 
funnel-like crests propagating mainly downstream and the other with parabola- 
like crests not penetrating into an upstream wedge containing the second 
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quadrant. The parabola-like crests travel upstream with speeds greater than 
U while the crests of the other system shrink towards the downstream part of 
the forcing line. As co -+ 1 the system with parabola-like crests gets compressed 
and disappears when co = 1, whereas the other system spreads out to propagate 
in all directions below a line through the forcing effect and perpendicular to the 
axis of rotation. For go > I there is only a single system of waves, propagating 
downstream in a wedge. 

For each direction there is a particular frequency, namely 2f2 sin a, for which 
the forcing effect excites a ‘column’ which is composed of straight unattenuated 
waves of fixed frequency travelling (ahead and behind) parallel to the forcing 
line. Also there are two other systems, which propagate mainly downstream. 
The formation of the ‘column’ is very much similar to the formation of the 
‘Taylor column’ even though their structures are quite different. But it is 
observed that the ‘column’ is the counterpart of the ‘Taylor column’ for an 
arbitrary a,  for when a -+ 0 the ‘column7 and the associated wave systems do 
tend to the ‘Taylor column’ and cylindrical waves on the downstream side. The 
upstream ‘column’ is most prominent when a = 0 and decreases as a increases, 
disappearing completely when a = &r while the downstream ‘column7 persists 
with some modifications. 

In the steady case the disturbance is either found over the entire region 
below the line through the forcing effect and parallel to the axis of rotation or 
crosses it on the downstream side when a < 19’. But if the forcing effect is 
oscillatory the disturbance penetrates into the region above this line both on the 
upstream as well as on the downstream side for all a .  This is because in the steady 
case the longest waves always propagate parallel to the axis of rotation whereas 
a non-zero frequency makes it possible for them to propagate along directions 
inclined a t  i cot-l(c;Z- 1)P to the axis of rotation. Unless a is very close t o  i n  
there is always an influence on the upstream side. This upstream influence is 
to the left or to the right of the forcing line according as co - sin a 2 0 and in- 
creases as this quantity tends to zero, The caustic along the downstream part of 
the forcing line persists for all c,,, leading to a concentration of wave crests along 
the downstream part of the forcing line. 

The arbitrary inclination of the forcing line (not equal to zero or Qn) makes the 
disturbed region asymmetric about the forcing line. When sina - co > 0 the 
disturbed region to the left of the forcing line is always bigger than that on the 
right and the reverse situation occurs when sin a - go < 0. As a varies the wedges 
enveloping the possible wave systems rotate about the forcing effect in a direction 
opposite to that of the forcing line while the wave crests also undergo a kind of 
rotation about the caustic points with some minor modifications. The wave 
systems appearing for 0 < go < sina are the counterparts of the wave systems 
excited by forcing effects travelling perpendicular to the axis of rotation for 
frequencies less than 2Q. Similarly the wave systems appearing for sin a < go < I 
are the counterparts for u; < 21R when the forcing effects travel parallel to the 
axis of rotation. Thus the arbitrary nature makes both kinds of wave system 
possible. 

Once agein from the analogy between the Boussinesq stratified fluid and the 
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homogeneous rotating fluid it follows that the wave pattern excited in a stratified 
fluid by a forcing effect travelling in a direction at  in - a to the vertical is similar 
to the mirror image in the forcing line of the pattern excited by a forcing effect 
travelling in a direction inclined a t  a to the axis of rotation. For this analogy 
to hold the forcing effects in both the fluid systems should be mirror images of 
each other in the forcing line, the other parameters being the same, 2Q being 
replaced by N (the Brunt-Vaisala frequency). From the analogy it may be 
observed that the wave patterns described herein agree with that of Stevenson & 
Thomas (1969), who have studied both theoretically and experimentally the 
waves generated by a moving oscillating cylinder in a stratified fluid. For the 
‘column’ case see their figures 6 (c) and (d). 
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